Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Cell Rep Med ; 5(3): 101445, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38428429

RESUMEN

The emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2.86 and JN.1 raise concerns regarding their potential to evade immune surveillance and spread globally. Here, we test sera from rhesus macaques immunized with 3 doses of wild-type SARS-CoV-2 receptor-binding domain (RBD)-Fc adjuvanted with the STING agonist CF501. We find that the sera can potently neutralize pseudotyped XBB.1.5, XBB.1.16, CH.1.1, EG.5, BA.2.86, and JN.1, with 50% neutralization titers ranging from 3,494 to 7,424. We also demonstrate that CF501, but not Alum, can enhance immunogenicity of the RBD from wild-type SARS-CoV-2 to improve induction of broadly neutralizing antibodies (bnAbs) with binding specificity and activity similar to those of SA55, BN03, and S309, thus exhibiting extraordinary broad-spectrum neutralizing activity. Overall, the RBD from wild-type SARS-CoV-2 also contains conservative epitopes. The RBD-Fc adjuvanted by CF501 can elicit potent bnAbs against JN.1, BA.2.86, and other XBB subvariants. This strategy can be adopted to develop broad-spectrum vaccines to combat future emerging and reemerging viral infectious diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/genética , Anticuerpos ampliamente neutralizantes , Macaca mulatta , Epítopos/genética
2.
Environ Pollut ; 349: 123864, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554837

RESUMEN

The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.

3.
J Environ Sci (China) ; 141: 277-286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408828

RESUMEN

The dissemination of antibiotic resistance genes (ARGs) in soil has become a global environmental issue. Vermicomposting is gaining prominence in agricultural practices as a soil amendment to improve soil quality. However, its impact on soil ARGs remains unclear when it occurs in farmland. We comprehensively explored the evolution and fate of ARGs and their hosts in the field soil profiles under vermicompost application for more than 3 years. Vermicompost application increased several ARG loads in soil environment but decreased the high-risk bla-ARGs (blaampC, blaNDM, and blaGES-1) by log(0.04 - 0.43). ARGs in soil amended with vermicompost primarily occurred in topsoil (approximately 1.04-fold of unfertilized soil), but it is worth noting that their levels in the 40-60 cm soil layer were the same or even less than in the unfertilized soil. The microbial community structure changed in soil profiles after vermicompost application. Vermicompost application altered the microbial community structure in soil profiles, showing that the dominant bacteria (i.e., Proteobacteria, Actinobacteriota, Firmicutes) were decreased 2.62%-5.48% with the increase of soil depth. A network analysis further revealed that most of ARG dominant host bacteria did not migrate from surface soil to deep soil. In particular, those host bacteria harboring high-risk bla-ARGs were primarily concentrated in the surface soil. This study highlights a lower risk of the propagation of ARGs caused by vermicompost application and provides a novel approach to reduce and relieve the dissemination of ARGs derived from animals in agricultural production.


Asunto(s)
Antibacterianos , Suelo , Animales , Suelo/química , Genes Bacterianos , Estiércol/análisis , Microbiología del Suelo , Bacterias/genética , Productos Agrícolas
4.
Ecotoxicol Environ Saf ; 269: 115773, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039853

RESUMEN

Monitoring the annual variation of antibiotic resistance genes (ARGs) in livestock wastewater is important for determining the high-risk period of transfer and spread of animal-derived antibiotic resistance into the environment. However, the knowledge regarding the variation patterns of ARGs, especially intracellular ARGs (iARGs) and extracellular ARGs (eARGs), over time in livestock wastewater is still unclear. Herein, we conducted a year-round study to trace the profiles of ARGs at a Chinese-intensive dairy farm, focusing on the shifts observed in different months. The results showed significant differences in the composition and variation between iARGs and eARGs. Tetracycline, sulfonamide, and macrolide resistance genes were the major types of iARGs, while cfr was the major type of eARG. The environmental adaptations of the host bacteria determine whether ARGs appear as intracellular or extracellular forms. The total abundance of ARGs was higher from April to September, which can be attributed to the favorable climatic conditions for bacterial colonization and increased antibiotic administration during this period. Integron was found to be highly correlated with most iARGs, potentially playing a role in the presence of these genes within cells and their similar transmission patterns in wastewater. The intracellular and extracellular bacterial communities were significantly different, primarily because of variations in bacterial adaptability to the high salt and anaerobic environment. The intracellular co-occurrence network indicated that some dominant genera in wastewater, such as Turicibacter, Clostridium IV, Cloacibacillus, Subdivision5_genera_incertae_sedis, Saccharibacteria_genera_incertae_sedis and Halomonas, were potential hosts for many ARGs. To the best of our knowledge, this study demonstrates, for the first time, the annual variation of ARGs at critical points in the reuse of dairy farm wastewater. It also offers valuable insights into the prevention and control of ARGs derived from animals.


Asunto(s)
Antibacterianos , Aguas Residuales , Animales , Antibacterianos/farmacología , Genes Bacterianos , Granjas , Farmacorresistencia Bacteriana , Macrólidos , Bacterias
5.
J Environ Manage ; 351: 119837, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154225

RESUMEN

Phosphate concentrations in eutrophic surface waters are usually low, and efficient removal of low concentration phosphate remains a challenge. In this study, Ca-doped LaMnO3 synthesized at doping ratios, designated as CaxLa1-xMnO3 (x = 0, 0.2, 0.4, 0.7), were compared. It was found that, the adsorption capacity of Ca0.4La0.6MnO3 material reached 63.01 mg/g at pH = 5, increased by 63.6% over the undoped LaMnO3 perovskite. For long-term adsorption, Ca0.4La0.6MnO3 could constantly adsorb phosphate to avoid phosphate accumulation (<0.05 mg/L). This proves that Ca0.4La0.6MnO3 has the ability to control dynamic water eutrophication. Characterization and density functional theory results confirmed that CaxLa1-xMnO3 can increase the content of mesopores and oxygen vacancies, providing additional active sites. This reduces the adsorption energy of the La site, promotes electron transfer, and increases its affinity. It provides a new method for removing low-concentration phosphates.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Adsorción , Fosfatos/química , Agua , Concentración de Iones de Hidrógeno , Cinética
6.
Cell Commun Signal ; 21(1): 319, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946202

RESUMEN

Deubiquitinases (DUBs) play important roles in various human cancers and targeting DUBs is considered as a novel anticancer therapeutic strategy. Overexpression of ubiquitin specific protease 7 and 22 (USP7 and USP22) are associated with malignancy, therapy resistance, and poor prognosis in many cancers. Although both DUBs are involved in the regulation of similar genes and signaling pathways, such as histone H2B monoubiquitination (H2Bub1), c-Myc, FOXP3, and p53, the interdependence of USP22 and USP7 expression has never been described. In the study, we found that targeting USP7 via either siRNA-mediated knockdown or pharmaceutical inhibitors dramatically upregulates USP22 in cancer cells. Mechanistically, the elevated USP22 occurs through a transcriptional pathway, possibly due to desuppression of the transcriptional activity of SP1 via promoting its degradation upon USP7 inhibition. Importantly, increased USP22 expression leads to significant activation of downstream signal pathways including H2Bub1 and c-Myc, which may potentially enhance cancer malignancy and counteract the anticancer efficacy of USP7 inhibition. Importantly, targeting USP7 further suppresses the in vitro proliferation of USP22-knockout (USP22-Ko) A549 and H1299 lung cancer cells and induces a stronger activation of p53 tumor suppressor signaling pathway. In addition, USP22-Ko cancer cells are more sensitive to a combination of cisplatin and USP7 inhibitor. USP7 inhibitor treatment further suppresses in vivo angiogenesis and tumor growth and induced more apoptosis in USP22-Ko cancer xenografts. Taken together, our findings demonstrate that USP7 inhibition can dramatically upregulate USP22 in cancer cells; and targeting USP7 and USP22 may represent a more effective approach for targeted cancer therapy, which warrants further study. Video Abstract.


Asunto(s)
Neoplasias Pulmonares , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Neoplasias Pulmonares/patología , Histonas/metabolismo , Transducción de Señal , Línea Celular Tumoral
7.
Chin Clin Oncol ; 12(4): 38, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37699603

RESUMEN

BACKGROUND: The prognosis remains poor after standard chemoradiotherapy in locally advanced cervical cancer patients with pelvic and/or para-aortic lymph node metastases. Programmed cell death receptor-1 (PD-1) inhibitors have been recommended as the first-line treatment for recurrent cervical cancer. The efficacy of PD-1 inhibitor combined with concurrent chemoradiotherapy in locally advanced cervical cancer was still uncertain. This study aimed to explore the efficacy and safety of PD-1 inhibitors combined with concurrent chemoradiotherapy in locally advanced cervical cancer patients with pelvic and/or para-aortic lymph node metastases. METHODS: This retrospective study included patients with pelvic and/or para-aortic lymph node positive diseases [International Federation of Gynecology and Obstetrics (FIGO) stage IIB-IVA] who had received PD-1 inhibitors plus chemoradiotherapy/radiotherapy between April 1, 2020, and March 31, 2022 at the Hunan Cancer Hospital. The baseline clinicopathological characteristics, treatment, and clinical outcomes were collected. The major clinical outcomes were objective response rate (ORR), progression-free survival (PFS), and treatment-related adverse events (TRAEs). RESULTS: A total of 29 patients were included. The mean age was 55.8 [standard deviation (SD): 8.8] years. Most patients had stage IIIA-IIIB disease (72.4%) and squamous cell carcinoma (93.1%). All patients had lymph node metastases, including 24 (82.8%) with multiple metastases and 11 (37.9%) with para-aortic lymph node metastases. Among the 29 patients, 18 received sintilimab and 11 received camrelizumab concurrently with chemoradiotherapy or radiotherapy. The ORR was 96.6% [95% confidence interval (CI): 0.828, 0.993] at 3 months after radiotherapy (including 15 complete responses and 13 partial responses). At the data cutoff (August 31, 2022), the median follow-up was 14 (range, 5-30) months. The median PFS was not mature. The estimated 1- and 2-year PFS rates were 85.3% (95% CI: 60.1%, 95.2%) and 76.8% (95% CI: 47.0%, 91.2%), respectively. TRAEs of any grade occurred in 27 (93.1%) patients, most commonly as a decrease in white blood counts (82.8%), anemia (58.6%), and fatigue (48.3%). TRAEs of grade 3 or greater occurred in eight (27.6%) patients. There were no treatment-related deaths. CONCLUSIONS: PD-1 inhibitor combined with concurrent chemoradiotherapy showed potential benefit in term of tumor response and PFS in locally advanced cervical cancer patients with pelvic and/or para-aortic lymph node metastases.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Embarazo , Humanos , Persona de Mediana Edad , Neoplasias del Cuello Uterino/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico , Estudios Retrospectivos , Metástasis Linfática , Recurrencia Local de Neoplasia , Quimioradioterapia
8.
BMC Med ; 21(1): 376, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775744

RESUMEN

BACKGROUND: The effect of the combination of an anti-angiogenic agent with a poly (ADP-ribose) polymerase (PARP) inhibitor in cancer treatment is unclear. We assessed the oral combination of fuzuloparib, a PARP inhibitor, and apatinib, a VEGFR2 inhibitor for treating advanced ovarian cancer (OC) or triple-negative breast cancer (TNBC). METHODS: This dose-escalation and pharmacokinetics-expansion phase 1 trial was conducted in China. We used a standard 3 + 3 dose-escalation design, with 7 dose levels tested. Patients received fuzuloparib orally twice daily, and apatinib orally once daily. The study objectives were to determine the safety profile, recommended phase 2 dose (RP2D), pharmacokinetics, preliminary efficacy, and efficacy in relation to germline BRCA mutation (gBRCAmut). RESULTS: Fifty-two pre-treated patients were enrolled (30 OC/22 TNBC). 5 (9.6%) patients had complete response, 14 (26.9%) had partial response, and 15 (28.8%) had stable disease. Objective response rate (ORR) and disease control rate were 36.5% (95% CI 23.6-51.0) and 65.4% (95% CI 50.9-78.0), respectively. At the highest dose level of fuzuloparib 100 mg plus apatinib 500 mg, the ORR was 50.0% (4/8; 95% CI 15.7-84.3); this dose was determined to be the RP2D. Patients with gBRCAmut had higher ORR and longer median progression-free survival (PFS) than those with gBRCAwt, both in OC (ORR, 62.5% [5/8] vs 40.9% [9/22]; PFS, 9.4 vs 6.7 months) and TNBC (ORR, 66.7% [2/3] vs 15.8% [3/19]; PFS, 5.6 vs 2.8 months). Two dose-limiting toxicities occurred: grade 4 febrile neutropenia (fuzuloparib 100 mg plus apatinib 250 mg) and thrombocytopenia (fuzuloparib 100 mg plus apatinib 375 mg). Maximum tolerated dose was not reached. The most common treatment-related grade ≥ 3 toxicities in all patients were hypertension (19.2%), anaemia (13.5%), and decreased platelet count (5.8%). Exposure of apatinib increased proportionally with increasing dose ranging from 250 to 500 mg, when combined with fuzuloparib 100 mg. CONCLUSIONS: Fuzuloparib plus apatinib had acceptable safety in patients with advanced OC or TNBC. Fuzuloparib 100 mg bid plus apatinib 500 mg qd was established as the RP2D. With the promising clinical activity observed, this combination is warranted to be further explored as a potential alternative to chemotherapy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03075462 (Mar. 9, 2017).


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , China , Mutación , Piridinas/efectos adversos , Piridinas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
9.
Environ Sci Pollut Res Int ; 30(41): 93986-93997, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37518842

RESUMEN

The adsorption performance of layered double hydroxides (LDHs) is limited owing to self-aggregation. To avoid this and effectively control the eutrophication of water bodies, biochar (BC) was synthesized, herein, by pyrolyzing waste sheep manure at 500°C, and Ca-Al-LDHs were loaded on the surface via a coprecipitation method to obtain Ca-Al-LDHs-BC(CA) composites with varying LDH contents. The fitted maximum adsorption capacities of the CA-5%, CA-10%, CA-15%, and CA-20% samples (corresponding to samples with 5%, 10%, 15%, and 20% LDHs, respectively) were 10.21, 16.14, 22.40, and 28.47 mg g-1, which were (when converted into metal proportions) 1.48, 1.23, 1.15, and 1.13 times of that of single hydrotalcite, respectively. The double-layer model was fitted using the Levenberg-Marquardt iterative algorithm, which when combined with the characterization results, confirmed that the adsorption of phosphate ions by CA-BC occurred via the double-layer adsorption mechanism. Two types of direct adsorption were observed: ion exchange, which resulted in first-layer adsorption, and ligand exchange, which resulted in second-layer adsorption, with first-layer adsorption accounting for a higher proportion. This double-layer adsorption mechanism showed that LDHs-BC could achieve higher ligand exchange performance compared to that achieved using only LDHs.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Animales , Ovinos , Adsorción , Intercambio Iónico , Ligandos , Hidróxidos , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 895: 165109, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385504

RESUMEN

The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.


Asunto(s)
Oryza , Suelo , Suelo/química , Antibacterianos/farmacología , Ecosistema , Microbiología del Suelo , Bacterias/genética , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Estiércol
11.
Chemosphere ; 336: 139251, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331662

RESUMEN

Metal ions or metal (hydrogen) oxides are widely used as active sites in the construction of phosphate-adsorbing materials in water, but the removal of soluble organophosphorus from water remains technically difficult. Herein, synchronous organophosphorus oxidation and adsorption removal were achieved using electrochemically coupled metal-hydroxide nanomaterials. La-Ca/Fe-layered double hydroxide (LDH) composites prepared using the impregnation method removed both phytic acid (inositol hexaphosphate, IHP) and hydroxy ethylidene diphosphonic acid (HEDP) acid under an applied electric field. The solution properties and electrical parameters were optimized under the following conditions: organophosphorus solution pH = 7.0, organophosphorus concentration = 100 mg L-1, material dosage = 0.1 g, voltage = 15 V, and plate spacing = 0.3 cm. The electrochemically coupled LDH accelerates the removal of organophosphorus. The IHP and HEDP removal rates were 74.9% and 47%, respectively in only 20 min, 50% and 30% higher, respectively, than that of La-Ca/Fe-LDH alone. The removal rate in actual wastewater reached 98% in only 5 min. Meanwhile, the good magnetic properties of electrochemically coupled LDH allow easy separation. The LDH adsorbent was characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. It exhibits a stable structure under electric field conditions, and its adsorption mechanism mainly includes ion exchange, electrostatic attraction, and ligand exchange. This new approach for enhancing the adsorption capacity of LDH has broad application prospects in organophosphorus removal from water.


Asunto(s)
Compuestos Organofosforados , Contaminantes Químicos del Agua , Adsorción , Ácido Etidrónico , Concentración de Iones de Hidrógeno , Hidróxidos/química , Cinética , Aguas Residuales , Agua , Contaminantes Químicos del Agua/química , Compuestos Organofosforados/química
12.
Sci Total Environ ; 891: 164607, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37271403

RESUMEN

The contamination of antibiotic resistance genes (ARGs) associated with animal manure fertilization have attracted a global concern. Vermicompost has been widely popularized as an eco-friendly alternative to recycle animal manure on Hainan Island, China. However, the effects of vermicompost application on ARG spread and environmental fate in tropical agricultural soils remains undefined. Herein, the spatial prevalence and vertical behavior of ARGs in the soil profiles of vermicompost-applied agricultural regions were explored by a large-scale survey across Hainan Island. The results showed that although vermicompost application marginally enhanced the load of ARG pollution in the soil in Hainan, the ARGs derived from vermicompost did not eventually accumulate in the soil profile. The increase rate of ARGs in 40-60 cm soil layer was only 0.0015 % compared with that of unfertilized soil. Interestingly, vermicompost application reduced the abundance of high-risk ARGs, such as blaNDM and blaampC, by approximately one order of magnitude. Vermicompost was also observed to increase the abundance of beneficial bacteria, like Clostridium, and decrease those of Acidobacteriae, Planctomycetes and Verrucomicrobiae, which caused changes in the potential host bacteria of soil ARGs. Mobile genetic elements were further proven to be an essential factor that regulated the vertical dynamics of ARGs in vermicomposted soil, with a direct influence coefficient of 0.9975. This study demonstrated that the controllable risk associated with vermicompost application provided useful information to effectively reduce the threat of ARGs and promote the development of sustainable agriculture on Hainan Island.


Asunto(s)
Genes Bacterianos , Suelo , Animales , Estiércol/análisis , Agricultura , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , China , Microbiología del Suelo
13.
Front Microbiol ; 14: 1184238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125153

RESUMEN

Agricultural fertilization caused the dissemination of antibiotic resistance genes (ARGs) in agro-ecological environment, which poses a global threat to crop-food safety and human health. However, few studies are known about the influence of different agricultural fertilization modes on antibiotic resistome in the paddy-upland rotation soils. Therefore, we conducted a field experiment to compare the effect of different fertilization (chemical fertilizer, slow release fertilizer and commercial organic fertilizer replacement at various rates) on soil antibiotic resistome in paddy-upland rotation fields. Results revealed that a total of 100 ARG subtypes and 9 mobile genetic elements (MGEs) occurred in paddy-upland rotation soil, among which MDR-ARGs, MLSB-ARGs and tet-ARGs were the dominant resistance determinants. Long-term agricultural fertilization remarkably facilitated the vertical accumulation of ARGs, in particular that bla ampC and tetO in relative abundance showed significant enrichment with increasing depth. It's worth noting that slow release fertilizer significantly increased soil ARGs, when comparable to manure with 20% replacing amount, but chemical fertilizer had only slight impact on soil ARGs. Fertilization modes affected soil microbial communities, mainly concentrated in the surface layer, while the proportion of Proteobacteria with the highest abundance decreased gradually with increasing depth. Furthermore, microbial community and MGEs were further proved to be essential factors in regulating the variability of ARGs of different fertilization modes by structural equation model, and had strong direct influence (λ = 0.61, p < 0.05; λ = 0. 55, p < 0.01). The results provided scientific guidance for reducing the spreading risk of ARGs and control ARG dissemination in agricultural fertilization.

14.
Environ Res ; 231(Pt 1): 116038, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146932

RESUMEN

High-solid anaerobic digestion (HSAD), as an emerging disposal technology for swine manure, was commonly hampered by the long lag phase and slow startup, resulting in poor performance. Rapid startups by different leachate reflux forms can solve the problem, but related study was scarcely reported. Therefore, metagenomic analysis was used to exploit the effects of different rapid startups on the biogas performance, antibiotic resistance genes (ARGs) removal and microbial metabolic pathway during HSAD. Compared anaerobic digestion with natural start (T1), three different rapid startups were set, including with autologous leachate reflux (T2), with water reflux (T3) and with exogenous leachate reflux (T4). The results showed that rapid startups (T2-T4) enhanced biogas yield and the cumulative methane yield was increased by 3.7-7.3 times compared with the control. Totally, 922 ARGs were found, most of which belonged to multidrug and MLS ARGs. About 56% of these ARGs could be reduced in T4, while just 32% of ARGs were reduced in T1. Antibiotic efflux pump is the main mechanism of microbial action, which could be decreased largely by these treatments. Moreover, all the rapid startups (T2-T4) made Methanosarcina content (9.59%-75.91%) higher than that in the natural startup of T1 (4.54%-40.27%). This is why these fast-startups helped methane production fast. Network analysis showed that microbial community and environmental factors (pH and VFAs) both contributed to the spread of ARGs. The reconstructed methane metabolic pathway by different identified genes showed that all methanogenesis pathways existed but acetate metabolic pathway was dominant. And the rapid startups made the abundance of acetate metabolic (M00357) higher than the natural startup.


Asunto(s)
Antibacterianos , Estiércol , Porcinos , Animales , Antibacterianos/farmacología , Anaerobiosis , Biocombustibles , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Redes y Vías Metabólicas/genética , Metano
15.
Environ Sci Pollut Res Int ; 30(25): 66638-66650, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37101212

RESUMEN

La-based adsorbents are widely used for controlling phosphate concentration in water bodies. In order to explore the effect of different B-site metals regulating La-based perovskites on phosphate adsorption, three La-based perovskites (LaBO3, B = Fe, Al, and Mn) were prepared using the citric acid sol-gel method. Adsorption experiments showed that LaFeO3 exhibited the highest adsorption capacity for phosphate, which was 2.7 and 5 times higher than those of LaAlO3 and LaMnO3, respectively. The characterization results demonstrated that LaFeO3 has dispersed particles exhibiting larger pore size and more pores than LaAlO3 and LaMnO3. Spectroscopy analysis and density functional theory calculation results showed that different B-positions cause a change in the type of perovskite crystals. Among them, the differences between lattice oxygen consumption ratio, zeta potential and adsorption energy are the main reasons for the differences in adsorption capacity. In addition, the adsorption of phosphate by La-based perovskites were well fitted with Langmuir isotherm and pursues the pseudo-second-order kinetic models. The maximum adsorption capacities were 33.51, 12.31 and 6.61 mg/g for LaFeO3, LaAlO3 and LaMnO3, respectively. The adsorption mechanism was mainly based on inner-sphere complexation and electrostatic attraction. This study provides an explanation for the influence of different B sites on phosphate adsorption by perovskite.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Adsorción , Fosfatos/química , Lantano/química , Óxidos , Cinética , Contaminantes Químicos del Agua/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-36900894

RESUMEN

The objective of this study was to improve the comprehensive rate of utilization of rapeseed (Brassica napus subsp. napus L.), Myriophyllum (Myriophyllum spicatum L.) spicatum and alfalfa (Medicago sativa L.), reduce resource waste and environmental pollution. In this experiment, the effects of different proportions of the mixed silage of rapeseed and alfalfa or M. spicatum on the fermentation and nutritional quality were analyzed and further improved the quality of mixed silage using molasses and urea. Rapeseed was separately silaged with alfalfa and M. spicatum based on the ratios of 3:7, 5:5 and 7:3. After 60 days of mixed silage, the fermentation index and nutrient contents were measured to explore the appropriate ratio of mixed silage. The mixing ratio of rapeseed and alfalfa was better at 3:7: The contents of NH3-N/TN (4.61%), lactic acid (96.46 g·kg-1 dry matter [DM]) were significantly higher (p < 0.05). The crude protein content (118.20 g·kg-1 DM) was the highest (p < 0.05), while the pH (4.56) was the lowest when the mixing ratio of rapeseed and M. spicatum was 7:3. Considering the fermentation and nutrition quality, it is suggested that rapeseed and alfalfa should be mixed as silage at a ratio of 3:7 with 3% molasses and 0.3% urea, and rapeseed and M. spicatum should be mixed as silage at a ratio of 7:3 with 3% molasses.


Asunto(s)
Brassica napus , Brassica rapa , Ensilaje/análisis , Medicago sativa/química , Valor Nutritivo , Ácido Láctico , Fermentación
17.
ACS Appl Mater Interfaces ; 15(13): 16942-16952, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961428

RESUMEN

La-based metal oxide materials are environmentally friendly and show promise for phosphate adsorption. A series of Al-doped perovskite oxides, such as LaFexAl1-xO3, were prepared using a facile citric acid-assisted sol-gel method. The characterization results demonstrated that with optimized Al doping, there was a significant increase in the specific surface area and increased defect content of perovskite oxide LaFexAl1-xO3. Adsorption experiments showed that the performance of phosphate removal by LaFexAl1-xO3 was largely enhanced due to the improved adsorption capacity, which is maximum eight times higher compared with control perovskites prepared under neutral conditions. The mass transfer rate for adsorption was considerably boosted with phosphate removal within the initial 15 min. Spectroscopy analysis and density functional theory calculation results showed that the process of phosphate removal by the Al-doped perovskite oxides LaFexAl1-xO3 involved electrostatic interactions, an inner-sphere complex, and surface oxygen vacancies, among which the creation of oxygen vacancies caused by the Al doping was the predominant mechanism for reducing the bonding barrier during adsorption and generating adsorption sites. The results enable the development of a green and efficient perovskite adsorbent with a La-based perovskite material for phosphorus removal.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36901365

RESUMEN

With the aim of controlling the pollution of antibiotic resistance genes (ARGs) in livestock and poultry wastewater, this paper highlights an ecological treatment technology based on plant absorption and comprehensively discusses the removal effect, driving factors, removal mechanism, and distribution characteristics of ARGs in plant tissues. The review shows that ecological treatment technology based on plant absorption has gradually become an important method of wastewater treatment of livestock and poultry breeding and has a good ARG removal effect. In plant treatment ecosystems, microbial community structure is the main driver of ARGs, while mobile genetic elements, other pollutants, and environmental factors also affect the growth and decline of ARGs. The role of plant uptake and adsorption of matrix particles, which provide attachment sites for microorganisms and contaminants, cannot be ignored. The distribution characteristics of ARGs in different plant tissues were clarified and their transfer mechanism was determined. In conclusion, the main driving factors affecting ARGs in the ecological treatment technology of plant absorption should be grasped, and the removal mechanism of ARGs by root adsorption, rhizosphere microorganisms, and root exudates should be deeply explored, which will be the focus of future research.


Asunto(s)
Microbiota , Aguas Residuales , Animales , Genes Bacterianos , Antibacterianos/farmacología , Aves de Corral , Farmacorresistencia Microbiana/genética , Ganado
19.
Environ Pollut ; 319: 121010, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608732

RESUMEN

First time, this study synthesized a magnetic-modified sludge biochar (MSBC) as an activator of peroxymonosulfate (PMS) to eliminate sulfamethoxazole (SMX). The removal efficiency of SMX reached 96.1% at t = 60 min by PMS/MSBC system. The larger surface area and magnetic Fe3O4 of MSBC surface enhanced its activation performance for PMS. The PMS decomposition, premixing and reactive oxygen species (ROS) identification experiments combined with Raman spectra analysis demonstrated that the degradation process was dominated by surface-bound radicals. The transformed products (TPs) of SMX and the main degradation pathways were identified and proposed. The ecotoxicity of all TPs was lower than that of SMX. The magnetic performance was beneficial for its reuse and the removal efficiency of SMX was 83.3% even after five reuse cycles. Solution pH, HCO3- and CO32- were the critical environmental factors affecting the degradation process. MSBC exhibited environmental safety for its low heavy metal leaching. PMS/MSBC system also performed excellent removal performance for SMX in real waters including drinking water (88.1%), lake water (84.3%), Yangtze River water (83.0%) and sewage effluent (70.2%). This study developed an efficient PMS activator for SMX degradation in various waters and provided a workable way to reuse and recycle municipal sludge.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/química , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Peróxidos/química , Agua , Fenómenos Magnéticos
20.
Sci Total Environ ; 868: 161658, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36649763

RESUMEN

The accumulation and propagation of animal-derived antibiotic resistance genes (ARGs) pose great challenges to agricultural ecosystems. Vermicompost has drawn global attention as a new type of eco-friendly organic fertilizer. However, the effects of vermicompost application on ARGs in soil are still unclear. Here, we conducted a nationwide large-scale survey to explore the impact of vermicompost application on ARGs and the host in cropland fields as well as their regional differences. Vermicompost application was found to alter the pattern of ARGs, reduce the transfer of mobile genetic elements (MGEs), and mitigate the proliferation of high-risk bla-ARGs in soil. Regional differences in vermicompost-derived ARGs were observed in croplands, with less ARG-spreading risk in brown and yellow-brown soils. Total ARG abundance was present at the lowest level (1.24 × 105-3.57 × 107 copies/g) in vermicomposted soil compared with the croplands using animal manure (e.g., swine, chicken, and cow manure). Furthermore, vermicompost application increased the abundance of beneficial bacteria like Ilumatobacter and Gaiella, while reducing the abundance of Acidobacteria and Pseudarthrobacter. Network analysis showed that vermicompost altered ARG host bacteria and reduced the numbers of potential ARG hosts in soil. Microbes played a key role in ARG changes in vermicompost-treated soil. Our study provides valuable insight into the response of soil ARGs and the host to vermicompost in cropland ecosystem, and also provides a novel pathway for controlling the propagation of animal-derived ARGs.


Asunto(s)
Antibacterianos , Suelo , Animales , Porcinos , Antibacterianos/farmacología , Genes Bacterianos , Ecosistema , Estiércol/análisis , Microbiología del Suelo , Bacterias , China , Productos Agrícolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...